
Pedeto Getting Started Guide

This guide is intended as a reference for those working with
Perl Development Tools for the first time.

It is recommended that you step through the
material in a sequential fashion.

It is assumed at this point that you have downloaded
Perl Development Tools and installed the plugins in Eclipse.

Last updated: 2006-06-04

Preparing Eclipse
In this section, we will verify that Eclipse is properly set up for Perl development.

We assume the following:

You are starting with a new Eclipse installation with default settings.
You are familiar with the basic Eclipse workbench mechanisms, such as views and perspectives.

If you're not familiar with the basic workbench mechanisms, please see the Getting Started chapter of the
Workbench User Guide.

Verifying your Perl installation
If you still see the Eclipse Welcome page, click the arrow icon to begin using Eclipse.1.
Select the menu item Window > Preferences to open the workbench preferences.2.
Select Perl > Installed Perl Distributions in the tree pane on the left to display the Perl Distributions
Configuration preference page. Click on the Add... button to select a Standard Perl Distribution. Enter the
name and home directory of the Perl distribution into the dialog which opens.

Close the dialog and check the check box in order to define the just configured Perl Distribution as your
Default Perl Distribution. The Default Perl Distribution is used for all Perl projects unless defined otherwise
at the project level. Repeat the above steps to add additional Perl Distributions.

If you're not sure about the location of a Perl distribution click on the Search ... button. Specify the root

3.

directory for the search and click on OK. All Perl Distributions which are found are added automatically to
your list of Perl Distributions.

Select General > Workspace in the tree pane to display the Workspace preference page. Confirm the Build
automatically option is checked.

4.

Click on OK to save the preferences.5.

© Copyright G&H Softwareentwicklung 2006

Creating your first Perl project
In this section, we will create a new Perl project and add the famous "Hello World! program.

Creating the project
Open the Perl perspective.1.
Inside Eclipse select the menu item File > New > Project... to open the New Project wizard2.
Select Perl > Perl Project. Click Next > to start the New Perl Project wizard:

Enter "SampleProject" into the Project name field and click Next >.

3.

Click on Add Folder... and create a folder named "bin". We will place all "scripts" into the bin folder Create an
additional folder "lib". All module files will be placed into this directory. Ensure both directories are selected in
the dialog as shown below.

Close the dialog and click on Finish. Your Perl Project will be created.
Select the bin folder of SampleProject in the Perl Navigator.4.
Select the menu item File > New > Other... to open the New Module wizard5.
Select Perl > Script then click Next to start the New Script wizard:6.

Type "HelloWorld" in the Name field and slick Finish. The file will now be created and the Perl editor is
opened with the new file.

7.

Type
use strict;
use warnings;
print "Hello World!";
in the Perl editor.

8.

Congratulations. You've created the famous Hello World script in Perl.9.

© Copyright G&H Softwareentwicklung 2006

Browsing Perl elements in the Perl Navigator
In this section, you will browse Perl elements within the SampleProject project.

Make sure you're in the Perl perspective. Open the Sample Project, the bin folder and click on the expand
icon left to HelloWorld.pl.

Note the yellow icon and the text main beneath HelloWorld.pl. The Navigator shows subelements of a source
file in the tree; e.g. the declared packages in a file. Since we didn't define a package in our HelloWorld.pl
script Perl places everything automatically into the main package.

1.

If you open the main folder you will see strict and warnings. These are the two "modules" which were
included.

2.

© Copyright G&H Softwareentwicklung 2006

Adding a Method to the Script
In this chapter we'll add a method to the Hello World script and take a first look at the background syntax check.

Open the HelloWorld.pl script by double clicking on in it in the Perl Navigator. Now start adding a method by
typing the following before the print command sub printHelloWorld()

Since we did't finish the method declaration the code cannot be compiled successfully. This is indicated by
error annotations (red boxes) which appear in the overview ruler, positioned on the right hand side of the
editor. If you hover over the second red box, a tool tip appears: Illegal declaration of subroutine
main::printHelloWorld. Note that error annotations in the editor's rulers are updated as you type.

1.

Click the Save button. The compilation unit is compiled automatically and errors appear in the Perl Navigator
view, in the Problems view and on the vertical ruler (left hand side of the editor). In the Perl Navigator view,
the errors are propagated up to the project of the compilation unit containing the error.

2.

Complete the new method by typing the following:

{
 print "Hello World";

The closing curly bracket was inserted automatically.

3.

Note that the new method appears at the bottom of the Outline view. It also appears in the Perl Navigator.4.
Save the file. Notice that the error indicators disappear since the script can now be compiled successflly.5.

Finally remove the print "Hello World!"; line outside the method.6.

© Copyright G&H Softwareentwicklung 2006

Adding new modules
In this chapter we'll add a new module to the project.

Select the lib folder in the Perl Navigator. Right click on lib and choose New > Other Select Perl > Module

Now click on Next > and the new Perl Module Wizard opens.

1.

Don't enter anyhting into Module Prefix and enter HelloWorld into the Name entry field. Click on Finish. This
will close the dialog and create the HelloWorld.pm file in your lib folder. The newly created file will be opened.
Now let's take a look at the file. The file is empty but of the package HelloWorld; line at the top of the file.2.
Now we're adding the recommended additional compile checks a constructor (a simple function we call new)
and a method which will print "Hello World from a Module". Do so by pasting the following code into the
editor:

use strict;
use warnings;

=head2 new

The constructor of the class.

=cut

sub new ($) {
 my $that = shift;
 my $class = ref($that) || $that;
 my $self = {};
 $self->{'FooBar'} = 1;
 bless($self, $class);
 return $self;
}

=head2 printHelloWorld

A method which will print the Hello World from a Module message.

=cut

sub printHelloWorld ($) {
 my($self) = @_;

3.

 print "Hello World from a Module.\n";
}

1;

Take you're time and look at th Perl Navigator and the outline. The new module and methods are added to
both of them.

4.

This is all which is needed to add a new Perl module to your project.5.

© Copyright G&H Softwareentwicklung 2006

Using content assist
In this section you will use content assist to write a method call. Open the HelloWorld.pl file in the Perl editor if it is
not already open.

First of all, we include the module which we've created in the previous chapter. This is done by adding

use HelloWorld;

below the use warnings; statement but before the method declaration.
If you're familar with Perl you might now start thinking about why the use HelloWorld; statement doesn't
trigger a compilation error. The reason for this is, the lib folder is set as being a source folder in the Project
Preferences. So it is added automatically to the include path when compiling HelloWorld.pl. The script would
however now fail at the command line if we would invoke it directly. So we add the following lines of code to
the HelloWorld.pl script (before the use HelloWorld; statement).

use File::Spec;
use FindBin;
BEGIN {
 my $libPath = File::Spec->catdir($FindBin::Bin, File::Spec->updir(), 'lib');
 push(@INC, $libPath);
}

The script now compiles without a hitch; both in Pedeto and at the command line.

1.

After we're now done with the prepration work, let's start using content assist. First we create a new instance
of the HelloWorld class by adding

my $helloWorld = HelloWorld->new();

at the end of the file. This is important so the IDE knows which methods may be called for $helloWorld. Now
type

$helloWorld->

at the end of the file. The content assist dialog will now pop up and provides you a list of proposals.

Also note the pod documentation, which was inserted above the currently selected method, is also shown.

2.

Type the letter 'p' just behind $helloWorld->. The list of proposals is narrowed and now only shows the
"printHelloWorld()" method. Press enter to insert the method into the code. You can also open content assist
manually by pressing Ctrl+Space after $helloWorld->.

3.

Complete the line by typing ;.4.
Save the file.5.

Important: Since Perl variables are not type safe, the IDE cannot know which proposals it shall make for a variable.
So you have to give the IDE some hints about the type of a variable. If you create a new instance via the new
method like
my $testVariable = Red::Green::Blue->new();
or
my $testVariable = new Red::Green::Blue();
the IDE is able to determine automatically the class of $testVariable. And that's also the reason why content assist
did work in the above example. If the variable already holds an instance (e.g. a variable which was passed to a
method call) you should add a comment before the first use of the variable like this:
#@var $testvariable Red::Green::Blue
Another option for placing this comment is in the pod documentation above a method or in the pod documentation at
the top of the module (so you have to declare e.g. the type of $self only once per file). Let's revisit the
HelloWorld.pm module. Open the module and add

#@var $self HelloWorld

into the pod documentation of the printHelloWorld method. Now go into the printHelloWorld method and type

$self->. Content assist will now also pop up as shown below.

© Copyright G&H Softwareentwicklung 2006

Identifying problems in your code
In this section, we will review the different indicators for identifying problems in your code.

Build problems are displayed in the Problems view and annotated in the vertical ruler of your source code.

Open HelloWorld.pm in the editor from the Perl Navigator view.1.
Add a syntax error by deleting the closing curly bracket of the printHelloWorld method.2.
Click the Save button. The project is rebuilt and the problem is indicated in several ways:

In the Problems view, the problems are listed,
In the Perl Navigator view and the Outline view, problem ticks appear on the affected Perl elements and
their parent elements,
In the editor's vertical ruler, a problem marker is displayed near the affected line,
Squiggly lines appear under the word which might have caused the error, and
The editor tab is annotated with a problem marker.

An important thing to note are the error messages in HelloWorld.pl. Since HelloWorld.pm is included by
HelloWorld.pl it also cannot be compiled successfully any more. Thus error markers appear for HelloWorld.pl,
too.

3.

You can hover over the problem marker in the vertical ruler to view a description of the problem.4.

Click the Close ("X") button on the editor's tab to close the editor.5.
In the Problems view, select a problem in the list. Open its context menu and select Go To. The file is opened in
the editor at the location of the problem.

6.

If you want to get access to the Raw Output Message which is generated by the Perl interpreter open the
corresponding view via Window > Show View > OtherSelect Perl > Raw Output Messages in the dialog
which opens. Now activate the view we've just opened. You should see output similar to the output shown in the
below image.

7.

Correct the problem in the editor by adding the missing closing curly bracket. Click the Save button. The project
is rebuilt and the problem indicators disappear.

8.

© Copyright G&H Softwareentwicklung 2006

Running your programs
In this section, you will learn more about running Perl programs in the workbench.

In the Perl Navigator view, find HelloWorld.pl and select it.1.
To create a Launch Configuration, use the drop-down Run menu in the toolbar and select Run... to open the
Launch Configurations dialog.

2.

Select Perl Application and click on the New button to create a new Perl Launch Configuration.3.

Enter "HelloWorld" as Name into the new Perl Launch Configuration and press Apply.4.
Click Run to run the application. The console will capture the output generated by our script.5.

Switch to the Debug perspective. In the Debug view, notice that a process for the last program launch was
registered when the program was run.

6.

By default, the Debug view automatically removes any terminated launches when a new launch is created. This
preference can be configured on the Launching preference page located under the Run/Debug preference
page.

Note: You can relaunch a terminated process by selecting Relaunch from its context menu.

Select the drop-down menu from the Run button in the workbench toolbar. This list contains the previously
launched programs. These programs can be relaunched by selecting them in the history list.

7.

From the context menu in the Debug view (or the equivalent toolbar button), select Remove All Terminated to
clear the view of terminated launch processes.

8.

© Copyright G&H Softwareentwicklung 2006

Debugging your programs
In this section, we'll debug a Perl program.

Make sure you're in the Perl Perspective. Locate HelloWorld.pl in the Perl Navigator and double-click on it so it is
opened in an editor.

1.

Locate the line which contains my $helloWorld = HelloWorld->new();.

Move your mouse pointer to the left ruler and double-click on the left ruler at the position of the above mentioned
line. This will create a break point.

The breakpoint icon indicates the status of the breakpoint. The plain blue breakpoint icon indicates that the
breakpoint has been set, but not yet installed.
Note: Once the debugger was started and the breakpoint was installed, a checkmark overlay will be displayed on
the breakpoint icon.

2.

In the toolbar, select the Hello World Launch Configuration (in debug mode) we've made in Running your
programs.

3.

The script will now be started in a debug session. If the PadWalker module wasn't installed in the currently used
Perl Distribtion, a warning will be displayed. The PadWalker module is needed to display detailed information
about the variables which are being used. The PadWalker module can be downloaded from cpan.org.

Note: We strongly recommended installing the PadWalker module.

4.

The program will run until the breakpoint is reached. When the breakpoint is hit, execution is suspended, and you
are asked whether to open the Debug perspective (if you're not already in the Debug perspective). Click Yes.
Notice that the process is still active (not terminated) in the Debug view.

5.

http://www.cpan.org/

Note: The breakpoint now has a checkmark overlay since the breakpoint was successfully established in the
debug session.
Now hit F6. This will execute a single step in debug mode. Note $helloWorld is being added automatically to the
Variables view.

6.

If you've got the PadWalker module installed clicking on the arrow button will provide more information about the
values which are stored in the hash.

7.

In the editor in the Debug perspective, select $helloWorld from the line where the breakpoint is set, and from
its context menu, select Watch.

8.

The expression is evaluated in the context of the current stack frame, and shown in the Expression view in the
upper-right edge of the Debug view.

9.

The Variables view (available on a tab along with the Expressions view) displays the values of the variables in the
selected stack frame.

10.

The variables (e.g., $helloWorld) in the Variables view will change when you step through HelloWorld in the
Debug view. To step through the code, click the Step Over () button. Execution will continue at the next line in
the same method (or, if you are at the end of a method, it will continue in the method from which the current
method was called).

11.

There are other step buttons (Step Into , Step Return) to step through the code. Note the differences in
stepping techniques.

12.

You can end a debugging session by allowing the program to run to completion or by terminating it.13.
You can continue to step over the code with the Step buttons until the program completes.14.
You can click the Resume () button to allow the program to run until the next breakpoint is encountered or until
the program is completed.

15.

You can select Terminate from the context menu of the program's process in the Debug view to terminate the
program.

16.

© Copyright G&H Softwareentwicklung 2006

Organizing sources
In this section, we will take a closer look at our current project set up.

Select the SampleProject and open the context menu. Click on Properties. Select Perl Project Settings1.

As we've written in Creating your first Perl project we split the scripts files (.pl) and the perl modules (.pm) into
two different folders. The script files were put into the bin folder and the modules into the lib folder. Let's not
dive into a discussion on whether this is useful or not. As usual this is just one way of many on how you might
want to organize your project.

2.

All folders which are configured as being source folders are added to @INC before a script or module is being
compiled; or before you start to execute or debug it.

3.

Now let's assume we need an additional folder test into which we'll place our regression tests. Doing so is
straightforward. Click on the Add Folder ... button. Click on Create new Folder ... and enter test into the
Folder name: entry field of the dialog which opens. Click on OK then check the checkbox before test and
close this dialog by clicking on OK, too. You have now a total of three source folders configured for your
project. Close this dialog by selecting OK returning you to the Perl Perspective.

4.

Finally we'll add a folder into which we'll place the documentation of the project. This is done by selecting the
SampleProject in the Perl Navigator. Then open the context menu, select New > Folder. Enter doc into the
Folder name: entry field. Close the dialog by clicking on Finish.

5.

Note the doc folder has a different icon then the bin, lib and test folders. This way you can easily identify the
folders which contain source files and which do not.

© Copyright G&H Softwareentwicklung 2006

External Includes
If you've got a project which has dependencies into other projects you might want to add them to your @INC so they
can be resolved properly for syntax checks, code assist and so on.

Adding an external folder

Here we assume you want to add one or several directories to @INC but you don't want to manage the files in these
directories within Eclipse; i.e. you don't want to set up projects for these.

Open the Perl perspective and select SampleProject. Right click and select Properties. Select Perl Project
Settings. Then click on the tab Ext. Includes.

1.

Now click on Add Ext. Folder. Locate the directory you want to add and click on OK.2.

Close the preferences dialog and return to the Perl perspective. An additional folder was added to the Perl
Navigator which lists the external includes.

3.

Adding a reference to an other project

Before we can add a reference to an other project we first have to create this other project. So switch to the
Perl perspective.

1.

Then click on File > New > Project Select Perl > Perl Project. Enter ReferenceProject as Project name:.2.

Click on Next >. Click on the Add Folder ... button and add the folders bin and lib to the project. Ensure the
checkboxes before bin and lib are selected.

Close the dialog by clicking on OK and complete creating the project by clicking on Finish.
Now we're ready to reference the newly created project in our SampleProject. Click on SampleProject in the3.

Perl Navigator. Open the context menu and select Properties. Select Project References in the Properties
dialog.

As you can see in the above picture all projects which might be added are listed. Check the checkbox in front
of ReferenceProject and close the dialog by clicking on OK. The lib and bin directories of the
ReferenceProject are now added to @INC of the SampleProject.

© Copyright G&H Softwareentwicklung 2006

	Pedeto Getting Started Guide
	Preparing Eclipse
	Creating your first Perl project
	Browsing Perl elements in the Perl Navigator
	Adding a Method to the Script
	Adding new modules
	Using content assist
	Identifying problems in your code
	Running your programs
	Debugging your programs
	Organizing sources
	External Includes

